Approximately Counting Embeddings into Random Graphs
نویسندگان
چکیده
منابع مشابه
Approximately Counting Embeddings into Random Graphs
Let H be a graph, and let CH(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating CH(G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorp...
متن کاملApproximately Counting Perfect Matchings in General Graphs
So far only one approximation algorithm for the number of perfect matchings in general graphs is known. This algorithm of Chien [2] is based on determinants. We present a much simpler algorithm together with some of its variants. One of them has an excellent performance for random graphs, another one might be a candidate for a good worst case performance. We also present an experimental analysi...
متن کاملCounting Euclidean embeddings of rigid graphs
A graph is called (generically) rigid in Rd if, for any choice of sufficiently generic edge lengths, it can be embedded in Rd in a finite number of distinct ways, modulo rigid transformations. Here we deal with the problem of determining the maximum number of planar Euclidean embeddings as a function of the number of the vertices. We obtain polynomial systems which totally capture the structure...
متن کاملApproximately Counting Hamilton Paths and Cycles in Dense Graphs
We describe fully polynomial randomized approximation schemes for the problems of determining the number of Hamilton paths and cycles in an n-vertex graph with minimum degree (g + e)n, for any fixed e > 0. We show that the exact counting problems are #P-complete. We also describe fully polynomial randomized approximation schemes for counting paths and cycles of all sizes in such graphs.
متن کاملOn Approximately Counting Colorings of Small Degree Graphs
We consider approximate counting of colorings of an n-vertex graph using rapidly mixing Markov chains. It has been shown by Jerrum and by Salas and Sokal that a simple random walk on graph colorings would mix rapidly, provided the number of colors k exceeded the maximum degree ∆ of the graph by a factor of at least 2. We prove that this is not a necessary condition for rapid mixing by consideri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorics, Probability and Computing
سال: 2014
ISSN: 0963-5483,1469-2163
DOI: 10.1017/s0963548314000339